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AbstrAct

Introduct ion:  Tuberculosis (TB) is an infectious disease caused by Mycobac-
terium tuberculosis. In 2019 the WHO reported approximately 10 million TB cases 
and 1.4 million deaths worldwide. TB still remains one of the leading causes of 
death in humans. Brazil is one of 30 countries with the highest TB burden with 
96,000 new cases and 6,700 deaths reported in 2019. From 2015 the TB incidence 
is increasing by 2%–3% annually. It means that TB control programs need to be 
improved.

Aim:  Our aim is to show the impact of active case finding of TB cases among a 
high-risk subpopulation on decline of the incidence in the general population.

Mater ia l  and  methods :  We use a SIS-type compartmental mathematical 
model to describe the disease dynamics. We consider the population as a hete-
rogeneous population which differ in disease transmission risk. Using best-fit 
techniques we compare the actual data with the model. For the fitted parameters 
we calculate the basic reproduction number and estimate the TB trends for the 
next few years applying several preventative protocols.

Resu l t s  and  d i scuss ion:  Using numerical simulations we examine the im-
pact of ACF on the disease dynamics. We show that active screening among high 
risk subpopulations can help to reduce TB spread. We show how the reproduction 
number and estimated incidence decline depend on the detection rate.

Conclus ions :  Active screening is one of the most effective ways for reducing 
the spread of disease. However, due to financial constraints, it can only be used 
to a limited extent. Properly applied detection can limit the spread of the disease 
while minimizing costs.
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1. IntRoductIon

Tuberculosis (TB) is a communicable disease caused by My-
cobacterium tuberculosis. In general, TB affects the lungs (pul-
monary TB) but can also affect other parts of the human body 
(extrapulmonary TB). According to the WHO, one-third of 
the global population has been infected (may be considered 
as a reservoir of the infection). It is estimated that 5%–10% 
of the latent TB can be later developed and activate causing 
the infection. In 2019 the WHO reported about 10 million 
TB cases and 1.4 million deaths worldwide.1 TB is one of the 
top 10 causes of death worldwide and is the leading cause of 
death from a single agent (more than HIV/AIDS).

The epidemic of HIV in the 1990s showed that the 
global incidence rate of TB during the 1990s was increas-
ing. The WHO and Stop TB Partnership responded by in-
creasing the targets for TB control within the United Na-
tions Millennium Development Goals, setting a strategy for 
decreasing the TB incidence and death rate by 2015. The 
strategy was based on the fast diagnosis and treatment of 
active TB cases. One of the most important elements of the 
strategy was preventative therapy, in particular for TB/HIV 
co-infected people. One of the internationally agreed targets 
was the eradication of TB by 2050, meaning that the an-
nual incidence of the disease should be less than 1 case per 
1 million of population. Despite the existing recommenda-
tions, work on the development of an effective vaccine, and 
research aimed at increasing the effectiveness of treatment, 
achieving this goal seems doubtful.

The United Nations Sustainable Development Goals 
and the WHO End TB Strategy agreed target for the period 
2016–2030 is an 80% reduction in the TB incidence rate by 
2030 compared with 2015, with two milestones: a 20% re-
duction in 2020; and a 50% reduction in 2025. TB deaths to 
be reduced by 90% by 2030 compared with 2015, with two 
milestones: a 35% reduction in 2020 and a 75% reduction 
in 2025.1

Brazil is one of 30 countries with the highest incidence 
of TB worldwide. In 2019 the WHO estimated there to be 
96,000 new cases of TB, including 11,000 HIV-positive cas-
es, which is equivalent to 45.20 cases per 100,000 population 
(incidence rate), together with 6,700 deaths caused by TB, 
including 1,200 HIV-positive cases, which is equivalent to 
3.15 per 100,000 population (excluding HIV-positive: 2.59 
per 100,000). Brazil has formulated their own targets for TB 
elimination and control (Brazilian National Plan to End 
Tuberculosis as a Public Health Problem). Although the 
TB incidence rate in 2015 decreased by 33% compared to 
1990, from 2015 it is increasing by 2%–3% annually, while 
the total incidence is increasing by 4%–5% annually. The 
increasing incidence rate means that the WHO and End TB 
Strategy targets become unachievable; the result being that 
the control programs need to be improved.2

In disease control, mathematical modelling plays an im-
portant role. In the past several decades, many mathemati-
cal models of disease dynamics have been formulated, ana-
lyzed and examined. The first models were formulated by 

Kermack and McKendrick in the 1920s and 1930s3. These 
models have inspired many researchers to investigate new 
models. Mathematical models for TB dynamics and control 
have been used since the 1960s4. Nowadays, the numerical 
methods for data fitting give a proper combination of theo-
retical analysis and practical applications by exploring the 
effects of population growth, disease spread, randomness, 
and age structures using computer simulations. Computer 
simulations of mathematical models, which are built under 
realistic assumptions and compared with epidemiological 
and demographic data, allow disease controllers to test many 
control protocols and reject those strategies that seem inef-
fective or economically unjustified. What is more, they are 
able to take into account several control strategies (isolation, 
treatment, vaccination, active screening etc.) and model the 
possible synergy effects, which are unpredictable.4–8

It is obvious that in a given population there are groups 
characterized by significantly higher transmission, e.g. the 
homeless; the irresponsible; the uneducated and so on. The 
relationship between TB and homelessness has been known 
for over 100 years,9 Homelessness, as a special form of pov-
erty, increases the risk of contracting tuberculosis many 
times.10,11 Moreover, homeless people, despite the advanced 
stage of the disease, are often not treated, which results 
in intensive disease transmission. It is estimated that the 
homeless population has an incidence rate 10 to 85 times 
higher compared to the rest of the population2,11–13 and their 
period of infection may be several times longer. It is known 
that the homeless spread the disease not only to each other, 
but also transmit the disease to the general population more 
intensively.14–16 For example, it is estimated that 6% of Bra-
zilians live in crowded and inappropriate conditions (for 
example, favelas) and 1.2 million people are either homeless 
or ‘precariously housed.’ It is estimated that in Brazil, the 
prevalence of homeless among all TB cases is 2.5%–3.0%17,18 
with the prevalence odd rate (OR) 5.49 (the corresponding 
95% confidence interval (CI)  5.29–5.70).17 A similar preva-
lence among the homeless was reported in Warmia and Ma-
zury region in Poland in 2004, before the first active case 
finding (ACF) campaign was carried out.12 

2. AIm

In this paper we analyze the actual data for TB in Brazil. 
Using mathematical modelling compared to the data, we 
estimate model parameters to predict further TB dynamics 
in Brazil. We follow the concept of Romaszko et al.19 We es-
timate the basic reproduction number and propose a new 
strategy of disease control. By dividing the population into 
two groups which are characterized by two different risks 
of disease spread, we study the effects of active screening of 
TB cases in a high-risk population. Our aim is to show the 
impact of ACF of TB cases among a high-risk subpopula-
tion on decline of the incidence in the general population. 
We show that active detection in the high-risk group gives 
much better results at a much lower cost.
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3. mAteRIAl And methods

3.1.  Mathematical  model
In this section we describe a mathematical model of TB 
dynamics. The analyzed model is a compartmental model, 
where the population is being divided into epidemiologi-
cal compartments and individuals can be transferred from 
one compartment to another. As TB confers no immunity 
against reinfection, individuals can transfer from the sus-
ceptible class S to the infective I and then back to the sus-
ceptible class. Such models are called SIS models.

Following the idea from Romaszko et al.19 and Choiński 
et al.20 we divide the population into two groups with dif-
ferent rates of disease spread. We use a SIS-type criss-cross 
model for non-homogeneous population formulated and 
analyzed by Bodzioch et al.21 Our aim is to show the differ-
ences between the disease dynamics in a homogeneous and 
heterogeneous populations. As it was shown by Bodzioch et 
al.,21 the disease control is possible only if the population is 
considered as a heterogeneous group.

Following the notation in Bodzioch et al.21, we denote by 
Si susceptibles and by Ii infected, i = 1,2. The first class S1, 
I1 is the class of non-homeless people, while the second one, 
S1, I2, indicates the homeless one. Susceptibles classes are 
increased at recruitment rate Ci. By μi we denote the natural 
mortality rate and by αi – disease related death rate. Param-
eters γi reflect the recovery parameter, where 1⁄γi is the mean 
duration of the infectious period. The model description 
can be constructed as follows by the system of four differ-
ential equations:

Ṡ1 = C1 – β11S1I1 – β12S1I2 + γ1I1 – μ1S1,

İ1 = β11S1I1 + β12S1I2 – (γ1 + α1 + μ1)I1,

Ṡ2 = C2 – β22S2I2 – β21S2I1+γ2I2 – μ2S2,

İ2 = β22S2I2 + β21S2I1 – (γ2 + α2 + μ2)I2,
where βij are disease transmission parameters. Note that, if 
β12 = 0 and β21 = 0, we have two models for two isolated 
homogeneous populations. The basic reproduction number, 
denoted by R0, for such model is

where ki = μi + αi + γi, i = 1,2.
It is known, that the epidemic dies out if R0 < 1, and 

may spread if R0 > 1.

3.2.  TB control
In general, there are three ways to control the spread of TB: 
(1) vaccination, (2) prevent progression from latent infec-
tion to active, (3) treat active cases. In this paper our aim is 
to consider an additional way to control the spread of this 
disease: active screening. We include in the model an addi-
tional term δ, which reflects the proportion of the detected 
infected individuals. We denote by delta the detection rate 
per person per year. It is called ‘patient detection rate’ and 
can be treated as an additional treatment rate and is a stand-
ard measure of detection in the literature.22 We consider ac-
tive detection only in the second subpopulation of homeless 
people, as the screening in the high risk population gives 
much better results than in the general population.19

It is obvious that the higher the detection rate, the more 
the incidence of the decrease. Of course, the detection pa-
rameter cannot grow indefinitely. We therefore assume that 
the detection parameter is from zero (no intervention) to 
two per one infected person per year. We analyze the effec-
tiveness of the intervention depending on parameter δ.

3.3.  Numerical  simulations 
We use epidemiological and demographical data available in 
the WHO report, the Brazilian Ministry of Health and the 
Brazilian Institute of Geography and Statistics. As the epi-
demic has changed many times in Brazil in recent years,23,24 
we use data from the 2015–2019 period (see Figure 1 and 
Table 1). Since 2015, we can observe a clear increase in inci-
dence: in the total cases as well as in the incidence rate. The 
prevalence of homeless among all TB cases is 2.5%–3.%,17,18 
while the number of homeless people is 0.5% of the total 
population. The mortality in the population can be esti-
mated based on WHO1 and Ranzani et al.17 According to 
the literature, the mortality among homeless people is up to 
twice higher than in the general population.25 All nominal 
parameters values are listed in Table 2.

The values of demographic parameters and the preva-
lence OR and the corresponding 95% CI are calculated by 

Table 1. Estimated epidemiological burden of TB in Brazil in 
2015–2019 (in thousands).1

Year Population Incidence 95% CI Mortality 95% CI
2019 211,000 96 82–111 6.7 6.1–7.5

2018 210,000 95 81–110 6.7 6.0–7.4

2017 209,000 91 78–105 7.0 6.2–7.8

2016 208,000 87 74–100 7.3 6.3–8.3

2015 206,000 84 72–97 7.7 6.4–9.5

Table 2. Nominal parameter values.

Name Value Unit Role Reference
C1 3,000 × 103 recruitment rate 26

C2 41 × 103 recruitment rate 26

µ1 0.6063 × 10-2 year-1 natural mortality rate 26

µ2 0.2746 × 10-1 year-1 natural mortality rate 26

α1 0.8036 × 10-1 year-1 disease related death rate 1

α2 0.1228 year-1 disease related death rate 25

γ1 1.8163 year-1 recovery rate estimated

γ2 0.5241 year-1 recovery rate estimated

β11 0.2134 × 10-9 disease transmission rate estimated

β12 0.1839 × 10-6 disease transmission rate estimated

β22 0.1412 × 10-6 disease transmission rate estimated

β21 0.1015 × 10-7 disease transmission rate estimated
δ [0,1] year-1 detection rate

        ———————————————1 ( C1 β22C2 √( β11C1 β22C2 )2 4β12β22C1C2)R0= — β11 —— + —— + —— – —— +—————
2 μ1k1 μ2k2 μ1k1 μ2k2 μ1μ2k1k2
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logistic regression in order to measure the strength of as-
sociation for each characteristic. All statistical analysis are 
performed using R software.

Differential equations are solved using Matlab software 
and standard solver ode45, which is based on 4th order 
Runge–Kutta algorithm with variable step. The tolerance 
is 10–6. We use Matlab lsqcurvefit function, which is a non-
linear curve-fitting procedure in least-squares sense, which 
provides a convenient interface for data-fitting problems. As 
the fitting procedure is based on gradient methods, it can 
lead to local minimum of the objective functional. In order 
to avoid this problem, the fitting algorithm is used 100,000 
times with different initial values.

4. Results

Based on actual data from 2015–2019 we can see that the 
disease spreads and the incidence increases. This confirms 
the need to improve the current spread control strategy. In 
order to propose a best way to control the disease, we apply 

the idea from Romaszko et al.19, Choiński et al.20 and Bodzi-
och et al.21,27 Dividing the population into two subpopula-
tions: non-homeless and homeless people, we are able to 
obtain deeper insight into the TB dynamics in the Brazil-
ian population. Using the best-fitted parameter values, we 
can estimate the disease spread within both subpopulations 
and between them. We use the best-fit procedure to estimate 
disease transmission parameters and recovery rates. All pa-
rameters are listed in Table 2. For the estimated parameters 
we can calculate that the basic reproduction rate R0 is 1.24 
(1.19–1.32).

TB incidences for the population and the fitted curve 
are depicted in Figure 2. The grey region depicts the un-
certainty ranges of the predictions, based on the best-fitted 
procedure. Based on the considered model and estimated 
parameters, we can make prediction about the future disease 
dynamics in the considered population.

In Figure 3 the basic reproduction number is plotted 
against the recruitment rates. The black point depicts the 
rate values estimated for the population. Figure 4 shows the 
dependence of the predicted incidence decline for different 

Figure 2. Actual data and best-fitted curve: predictions 
for the next few years of TB incidence trends in Brazil.

Figure 3. Dependence of the basic reproduction number 
on the recruitment rates. Black point depicts point (C1,c2)  
taken from Table 2.

Figure 4. Dependence of the incidence decline in years 
2020–2030 compared with 2015 on the detection rate, as-
suming that the detection will apply from 2021.

Figure 1. Incidence rate (blue) and total number of TB 
cases (red) in Brazil in 2000–2019.
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detection rates. Colors represent the total decline in inci-
dence in the following years compared to 2015. Note that it 
is assumed that the detection will be used from 2021.

Figure 5 shows results for three control strategies ap-
plied in the population of homeless people. The first part, 
depicted by red solid line, represents actual trends in the 
general population without any additional protocols (see 
also Figure 2). Then, we assume that active detection will be 
used among homeless from 2021 and we estimate the disease 
spread in the 2021–2030 period. Green and blue curves rep-
resent the results when detection rates are 0.1 and 0.3, and 
the grey regions depict the predicted trends for δ ∈ (0.05, 
0.15) and δ ∈ (0.25, 0.35), respectively.

5. dIscussIon

In this paper we adapt the concept presented by Romaszko et al.19 
We investigate the impact of ACF among the high-risk sub-
population of homeless on the incidence decline. Using the 
actual data we are able to fit the model parameters and then 
predict the future trends of the disease spread in the popula-
tion. Figure 2 shows the estimation of new cases in the next 
few years under the current control strategy. Simulations 
show that the disease is spreading in the population and if the 
upward trend from 2015–2019 is not stopped, the incidence 
in the next few years will increase by 5%–7% per year.

Control of the basic reproduction number is the most 
common method of limiting the spread of disease. As we 
have mentioned, the value of this rate is greater than one 
and the disease can spread in the population. Typically, most 
epidemic parameters are strictly dependent on the disease 
and the population. It is extremely difficult to change the 
disease transmission and mortality rate, thus we examine 
how the value of this rate depends on the recruitment rates 
(see Figure 3). Note that, when the rate C2 is below the solid 

line, the value of the reproduction number is less than one 
and the epidemic dies out. Various types of humanitarian 
and social organizations aim to lower the recruitment rate, 
but it is difficult to achieve.

In our study we aim to investigate the dependence of the 
incidence in the population on the active detection among 
homeless people. By δ we denote the detection rate. It is ex-
pected that the larger the rate δ is, the smaller the value of 
R0 should become. Figure 4 shows the dependence of the in-
cidence decline in years 2022–2030 compared with 2015 on 
the value of the detection rate. Here, we assume that ACF 
campaigns start in 2021 and then we show their impact on the 
incidence decline in the following years. It is predicted that 
in 2021 the incidence rate will increase by 20% compared to 
2015 and if an appropriate control started will be applied, it 
may start decreasing. In general, the larger the detection rate, 
the larger the decline of the reported incidence. However, in-
creasing values of the detection rate are more and more dif-
ficult to achieve. Additionally, as the detection rate increases, 
so does the cost of active screening. Usually, prevalence of new 
active cases in screening is 7%–10% decreases as the number 
of tested people increases. It means that in general one new 
infection is diagnosed per 10–15 tested people. It is clearly 
visible that the dependence in Figure 4 is not linear and in 
a long horizon of time the same results can be obtained for 
a smaller detection rate. The most effectiveness of the ACF 
can be observed for detection rate of 0.3. For larger values of 
the rate, the expected decline in incidence increases slightly. 
It is very important from the economical point of view as the 
financial support for preventative actions is highly limited. 
Following the results by Romaszko et al.,19 each identified 
homeless person may reduce the incidence of 3–4 individuals 
within 1 year and up to 20 individuals within 5 years, while 
carrying out similar screening in the general population gives 
much worse results, as the disease transmission is less intense 
there. One should also notice that if the detection rate stays 
below approximately 0.17 for the next few years, the inci-
dence increases (the decline is negative), compared to 2015. 

Figure 5 shows that for protocol with δ = 0.1, even if at 
the beginning the increase in incidence slows down, after 3–4 
years it rises again. Increasing the rate to approx. 0.17 only 
reduces the incidence to the level of 2015. In the following 
years, the incidence will increase again. This behavior is due 
to the reproduction number in the population is greater than 
one. A clear decrease in incidence is noticeable when the rate 
exceeds the value of 0.2. However, the effectiveness of the 
ACF campaign decreases as the detection rate increases above 
0.3. Note that, the detection rate of 0.3 means identifying 800 
TB-positive (i.e. less than 1% of the total TB cases) and test-
ing 8,000–12,000 homeless people annually. 

Our study shows a possible way to limit the disease 
spread in a population with an incidence of TB infection. It 
is expected that protocols should be changed when the dis-
ease spread is slowed down. We are aware of certain limita-
tions related to access to data and parameters. Nevertheless, 
our results are qualitative and indicate future trends and 
directions. We believe that they will help to design more ef-

Figure 5. Incidence rates under three control strategies. 
Red curve depicts current trends, while green and blue 
ones represent ACF among homeless with detection ra-
tes 0.1 and 0.3, respectively. Grey regions represents fu-
ture predictions for the rate of (0.05,0.15) and (0.25,0.35). 
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fective and less costly ACF campaigns and will contribute to 
better control of the spread of TB. It should be pointed out 
that our result can be applied not only for subpopulation of 
non-homeless and homeless people, but for each heteroge-
neous population that differ in disease spread, as well as for 
other infectious diseases which do not confer immunity.28 
It should be pointed out that ACF may not only reduce the 
disease spread in the general population, but it may also 
prolong the average life span of people from high-risk popu-
lations, e.g. homeless people. As the average life span of a 
homeless person is shorter by almost 20 years29 and in this 
population TB is the leading cause of death by an infectious 
disease, any reduction of disease spread may have important 
role in extending the expected life span.

6. conclusIons

TB may be intensively transmitted from the homeless to 
the general population. The larger the detection rate is, the 
higher incidence decline is observed. An increase in the 
detection rate is associated with an increase in the costs of 
active screening. In a long horizon of time, similar results 
can be achieved for a smaller detection rate. Reduction of 
the disease transmission in one subpopulation may reduce 
the incidence of the disease and help to control the disease 
spread.
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