REVIEW PAPER
Electromagnetic radiation in modern medicine: Physical and biophysical properties
 
More details
Hide details
1
Faculty of Public Health, Stanisław Staszic College of Public Administration, Białystok, Poland
 
2
Department of Rehabilitation, Medical University, Białystok, Poland
 
3
Faculty of Biology and Chemistry, University of Białystok, Poland
 
4
Department of Allergy, Cambridge University Hospital, Cambridge, United Kingdom
 
5
Department of Respiratory Diagnostics and Bronchoscopy, Medical University, Białystok, Poland
 
 
Submission date: 2012-06-07
 
 
Acceptance date: 2012-07-16
 
 
Publication date: 2020-04-10
 
 
Corresponding author
Ryszard Rutkowski   

Department of Respiratory Diagnostics and Bronchoscopy, Medical University, Waszyngtona 17, 15–274 Białystok, Poland. Tel.: +48 608 255 565.
 
 
Pol. Ann. Med. 2012;19(2):139-142
 
KEYWORDS
ABSTRACT
Introduction:
The widespread application of electromagnetic radiation (EMR) in modern medicine requires healthcare professionals and undergraduates to be familiar with its physical and biological properties.

Aim:
The aim of this paper was to review current literature on EMR physical principles.

Material and methods:
Available literature on EMR has been reviewed and grouped thematically.

Results and discussion:
The electromagnetic spectrum is divided into radio waves, microwaves, infrared, visible, ultraviolet, X-, gamma- and cosmic rays. Electromagnetic waves (EMWs) are characterized by frequency, velocity, period of vibration and wavelength. Depending on the medium, EMR may decelerate, reflect, refract, diffract, interfere or polarize. These phenomena apply to EMWs (light waves), pressure and water waves. The wave-particle duality of radiation is widely accepted and explains its nature and mechanism of action. Principles of quantum mechanics help to predict the potential biological impact of EMR.

Conclusions:
From humble beginnings, more than 100 years ago, EMR has become an important component of modern medicine. Therefore, there exists an urgent need for education and better understanding with respect to its principles and applications.

CONFLICT OF INTEREST
None declared.
 
REFERENCES (19)
1.
Federal Communications Commission Office of Engineering and Technology. Questions and answers about biological effects and potential hazards of radiofrequency electromagnetic fields. OET Bull. 1999;56:1–38. http://dx.doi.org/http://trans....
 
2.
Glauber RJ. Stulecie kwantów światła [One hundred years of light quanta]. Poste˛py Fiz. 2007;58(1):14–25 [in Polish].
 
3.
Hill WT. Electromagnetic radiation. In: Andrews DL, ed. Encyclopedia of Applied Spectroscopy. Berlin: Willey; 2009: 3–25.
 
4.
Janosik E. Światło spolaryzowane i jego zastosowanie w medycynie [Polarized light and its application in medicine]. Prace Instytutu Elektrotechniki. 2006;228:317–326 [in Polish]. Available from: http://www.iel.waw.pl/strony/w....
 
5.
Kalant H. Physiological hazards of microwave radiation, a survey of published literature. Can Med Assoc J. 1959;81(7):575–582.
 
6.
Kohen E, Santus R, Hirschberg JG. Fluorescence probes in oncology. In: The nature of light. London: Imperial College Press; 2002. http://dx.doi.org/10.1142/9781....
 
7.
Kolek Z. Oddziaływanie promieniowania optycznego na człowieka, korzystny wpływ i zagrożenia [The impact of optical radiation on humans, beneficial effects and risks]. Prace Instytutu Elektrotechniki. 2006;228:269–281 [in Polish].
 
8.
Kucharski M, Kokowska U. Wpływ promieniowania niejonizującego na żywy organizm [Effect of non-ionizing radiation on living organism]. In: Jaroszyk F, ed. Biofizyka. Podre˛cznik dlastudentów [Biophysics. Textbook for Students]. Warszawa: PZWL; 2008: 723–757 [in Polish].
 
9.
Lewicka M, Dziedziczak-Buczyńska M, Buczyński A. Wpływ promieniowania elektromagnetycznego na organizmy żywe [The influence of electromagnetic radiation on living organisms]. Pol Hyperbar Res. 2008;25(4):33–41.
 
10.
Ng KH Non-ionising radiations – sources, biological effects, emissions and exposure. In: Proceedings of the International Conference on Non-Ionising Radiation at UNITEN (ICNIR 2003). Electromagnetic Fields and Our Health; 2003. Available from: http://www.who.int/peh-emf/mee....
 
11.
Ostdiek VJ, Bord DJ, eds. Inquiry into Physics. Belmont: Thomson Brooks/Cole; 2008.
 
12.
Pasek J, Pasek T, Sieroń A. Światło spolaryzowane w poradn rehabilitacyjnej [Polarized light at a rehabilitation centre]. Rehabil Prakt. 2008;3(3):23–24 [in Polish].
 
13.
Principles of radiation protection. Seattle: EH&S; 2006. Available from: http://www.ehs.washington.edu/....
 
14.
Robertson V, Ward A, Low J, Reed A. Fizykoterapia. Aspekty kliniczne i biofizyczne [Physiotherapy. Clinical and Biophysical Aspects] Wrocław: Elsevier; 2009 [in Polish].
 
15.
Suess MJ. Nonionising radiation and health. Z Gesamte Hyg. 1985;31(12):664–667 [in German].
 
16.
The American Practical Navigation. Radio waves. Publication 9. Bethesda: National Imagery and Mapping Agency; 1995:165–177. Available from: http://msi.nga.mil/MSISiteCont....
 
17.
Tipler PA. Physics for Scientists and Engineers. New York: W.H. Freeman & Co.; 1999:509–539.
 
18.
Vandergriff LJ. Nature and properties of light. In: Roychoudhuri Ch, ed. Fundamentals of Photonics. Bellingham: SPIE Press; 2008 Available from: http://spie.org/Documents/Publ....
 
19.
 
Journals System - logo
Scroll to top