Selection of the isolate of Staphylococcus hominis for bacteriotherapy in patients with atopic dermatitis
More details
Hide details
Bogomolets National Medical University, Kyiv, Ukraine
State Scientific Control Institute of Biotechnology and Strains of Microorganisms, Kyiv, Ukraine
Submission date: 2022-08-31
Final revision date: 2022-12-04
Acceptance date: 2022-12-04
Online publication date: 2023-05-05
Corresponding author
Olena Mozyrska   

Bogomolets National Medical University, T. Shevchenko Blvd, 13, Kyiv, Ukraine, 01601. Tel.: +380 67 901 8108.
Pol. Ann. Med. 2023;30(1):44-49
Staphylococcus aureus plays a significant role in the development of the clinical picture in patients with atopic dermatitis. The use of commensal microflora can be a promising direction in treatment of atopic dermatitis.

The aim of this study is the selection of the optimal safe isolate of S. hominis for bacteriotherapy in patients with atopic dermatitis.

Material and methods:
Sensitivity of isolates of S. hominis ssp. hominis to antibacterial drugs was determined by the disk-diffusion method on Mueller–Hinton agar (HiMedia, India). The ability to form a biofilm was determined by measuring the amount of dye absorption by the biofilm on a microplate reader MR-96A (Mindray, China) at a wavelength of 495 nm. Antagonism in vitro was determined by the method of perpendicular strokes on the blood agar. In total, 24 adult volunteers (aged 18 to 60 years) were screened and included in the study. The results were calculated according to the zone of S. aureus growth retardation under the influence of metabolic products of S. hominis ssp. hominis.

Results and Discussion:
As a result of the study of 8 isolates of S. hominis ssp. hominis, which were obtained from the swabs taken from healthy skin of 24 people, one isolate of S. hominis ssp. hominis Hom-2 met all criteria of safety – Hom-2 demonstrated sensitivity to the studied antibiotics and formed a biofilm of low density (OD 0.15), and effectiveness (morphological and cultural properties, antagonistic effect on S. aureus).

In this work, an isolate of S. hominis ssp. hominis Hom-2 met all criteria of safety and efficacy and will be used in the further study of bacteriotherapy in patients with atopic dermatitis.

The authors would like to thank the patients and healthy volunteers.
This study had no source of funding.
The authors declare no conflict of interest.
Girolomoni G, de Bruin-Weller M, Aoki V, et al. Nomenclature and clinical phenotypes of atopic dermatitis. Ther Adv Chronic Dis. 2021;12:20406223211002979.
Volosovets ОP, Bolbot YuK, Beketova GV, et al. Allergic march in children of Ukraine [in Ukrainian]. Med Perspekt. 2021;26(4):181–188.
Miciński J, Kowalski IM, Zwierzchowski G, Szarek J, Pierożyński B, Zabłocka E. Characteristics of cow's milk proteins including allergenic properties and methods for its reduction. Pol Ann Med. 2013;20(1):69–76.
Kong HH, Oh J, Deming C, et al. Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Res. 2012;22(5):850–859.
Byrd AL, Deming C, Cassidy SKB, et al. Staphylococcus aureus and Staphylococcus epidermidis strain diversity underlying pediatric atopic dermatitis. Sci Transl Med. 2017;9(397):eaal4651.
Koh LF, Ong RY, Common JE. Skin microbiome of atopic dermatitis. Allergol Int. 2022;71(1):31–39.
Fölster-Holst R. The role of the skin microbiome in atopic dermatitis – correlations and consequences. J Dtsch Dermatol Ges. 2022;20(5):571–577.
Cogen AL, Yamasaki K, Muto J, et al. Staphylococcus epidermidis antimicrobial delta-toxin (phenol-soluble modulin-gamma) cooperates with host antimicrobial peptides to kill group A Streptococcus. PLoS One. 2010;5(1):8557.
Cogen AL, Yamasaki K, Sanchez KM, et al. Selective antimicrobial action is provided by phenol-soluble modulins derived from Staphylococcus epidermidis, a normal resident of the skin. J Invest Dermatol. 2010;130(1):192–200.
Zhang LJ, Guerrero-Juarez CF, Hata T, et al. Innate immunity. Dermal adipocytes protect against invasive Staphylococcus aureus skin infection. Science. 2015;347(6217):67–71.
Tham EH, Koh E, Common JEA, Hwang IY. Biotherapeutic approaches in atopic dermatitis. Biotechnol J. 2020;15(10):1900322.
Myles IA, Earland NJ, Anderson ED, et al. First-in-human topical microbiome transplantation with Roseomonas mucosa for atopic dermatitis. JCI Insight. 2018;3(9):120608.
Iwase T, Uehara Y, Shinji H, et al. Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization. Nature. 2010;465(7296):346–349.
Nakatsuji T, Hata TR, Tong Y, et al. Development of a human skin commensal microbe for bacteriotherapy of atopic dermatitis and use in a phase 1 randomized clinical trial. Nat Med. 2021;27(4):700–709.
Nakatsuji T, Chen TH, Two AM, et al. Staphylococcus aureus exploits epidermal barrier defects in atopic dermatitis to trigger cytokine expression. J Invest Dermatol. 2016;136(11):2192–2200.
Nakatsuji T, Chen TH, Narala S, et al. Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis. Sci Transl Med. 2017;9(378):4680.
Kloos WE, George CG, Olgiate JS, et al. Staphylococcus hominis subsp. novobiosepticus subsp. nov., a novel trehalose- and N-acetyl-D-glucosamine-negative, novobiocin- and multiple-antibiotic-resistant subspecies isolated from human blood cultures. Int J Syst Bacteriol. 1998;48(3):799–812.
Ahmed NH, Baruah FK, Grover RK. Staphylococcus hominis subsp. novobiosepticus, an emerging multidrug-resistant bacterium, as a causative agent of septicaemia in cancer patients. Indian J Med Res. 2017;146(3):420–425.
Palazzo IC, d'Azevedo PA, Secchi C, Pignatari AC, Darini AL. Staphylococcus hominis subsp. novobiosepticus strains causing nosocomial bloodstream infection in Brazil. J Antimicrob Chemother. 2008;62(6):1222–1226.
Roy P, Ahmed NH, Biswal I, Grover RK. Multidrug-resistant Staphylococcus hominis subsp. novobiosepticus causing septicemia in patients with malignancy. Indian J Pathol Microbiol. 2014;57(2):275–277.
Hall CW, Mah TF. Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiol Rev. 2017;41(3):276–301.
Tallawi M, Opitz M, Lieleg O. Modulation of the mechanical properties of bacterial biofilms in response to environmental challenges. Biomater Sci. 2017;5(5):887–900. doi:10.1039/c6bm00832a.
Del Pozo JL. Biofilm-related disease. Expert Rev Anti Infect Ther. 2018;16(1):51–65. doi:10.1080/14787210.2018.1417036.
Williams HC, Burney PG, Hay RJ, et al. The U.K. Working Party's Diagnostic Criteria for Atopic Dermatitis. I. Derivation of a minimum set of discriminators for atopic dermatitis. Br J Dermatol. 1994;131(3):383–396. doi:10.1111/j.1365-2133.1994.tb08530.
Puligundla P, Mok C. Potential applications of nonthermal plasmas against biofilm-associated micro-organisms in vitro. J Appl Microbiol. 2017;122(5):1134–1148. doi:10.1111/jam.13404.
Mozyrska OV. The significance of Staphylococcus aureus skin colonization and the yeast Malassezia in children for the development of atopic dermatitis. Modern Pediatr Ukraïne. 2022;2(122):39–43.
Eucast. The European committee on antimicrobial susceptibility testing. Retrieved from
Cau L, Williams MR, Butcher AM, et al. Staphylococcus epidermidis protease EcpA can be a deleterious component of the skin microbiome in atopic dermatitis. J Allergy Clin Immunol. 2021;147(3):955–966.e16.
Journals System - logo
Scroll to top