Current methods of focal liver lesion diagnosis
More details
Hide details
Department of Radiology, The Maria Sklodowska-Curie Memorial Cancer Center, Institute of Oncology, Gliwice Branch, Poland
Department of Medical Physics, The Maria Sklodowska-Curie Memorial Cancer Center, Institute of Oncology, Gliwice Branch, Poland
Department of Medical Analytics, University of Warmia and Mazury, Olsztyn, Poland
Submission date: 2013-01-21
Acceptance date: 2013-09-11
Online publication date: 2013-09-17
Publication date: 2020-04-08
Corresponding author
Barbara Bobek-Billewicz   

Department of Radiology, The Maria Sklodowska-Curie Memorial Cancer Center, Institute of Oncology ul. Wybrzeże Armii Krajowej 15, 44-100 Gliwice, Poland. Tel.: +48 32 278 93 67; fax: +48 32 278 93 65.
Pol. Ann. Med. 2013;20(2):141-148
The widespread availability of non-invasive radiological and diagnostic imaging techniques significantly contributed to the detectability of focal lesions in the liver. Ultrasonography, computed tomography (CT) multidetector CT (MDCT), conventional magnetic resonance imaging (MRI), diffusion-weighted magnetic resonance imaging (DW-MRI) and isotope imaging are used for focal liver diagnosis.

This article reviews the available methods for diagnosing focal liver lesions on the basis of current literature.

The diagnostic precision of a conventional ultrasound test in detecting and differentiating focal hepatic lesions is estimated at 62%. Its sensitivity for the detection of metastases ranges from 40% to 80%. If the majority of metastatic tumors are small, the sensitivity of ultrasound tests decreases dramatically to 20% for foci smaller than 1 cm. Multi-phase hepatic CT is the current standard that effectively diagnoses 63%–87% of focal changes in the liver. In many cases, standard MRI is sufficient for differentiating between benign and malignant tumors, but the results are often inconclusive. DW-MRI has emerged as a highly promising technique for oncological imaging, and it is used at various stages of oncological treatment. The discussed method does not require the administration of intravenous contrast, therefore, it is easy to repeat and useful in patients who suffer from severe renal dysfunctions and are at the risk of nephrogenic systemic fibrosis. In diagnosis of hepatic metastases, the sensitivity of 18F-FDG-PET/CT scans reaches up to 96%, and their specificity is estimated at 75%.

Among various imaging techniques diffusion-weighted imaging has emerged recently as a highly promising one.

None declared.
Bruegel M, Holzapfel K, Gaa J, Woertler K, Waldt S, Kiefer B, et al. Characterization of focal liver lesions by ADC measurements using a respiratory triggered diffusion-weighted single-shot echo-planar MR imaging technique. Eur Radiol. 2008;18(3):477–485.
Bruegel M, Rummeny EJ. Hepatic metastases: use of diffusion- weighted echo-planar imaging. Abdom Imaging. 2010;35(4):454–461.
Chua SC, Groves AM, Kayani I, Menezes L, Gacinovic S, Du Y, et al. The impact of 18F-FDG PET/CT in patients with liver metastases. Eur J Nucl Med Mol Imaging. 2007;34(12):1906–1914.
Coenegrachts K, De Geeter F, Ter Beek L, Walgraeve N, Bipat S, Stoker J, et al. Comparison of MRI (incliding SS SE-EPI end SPIO-enhanced MRI) and FDG–PET/CT for the detection of colcorectal metastases. Eur Radiol. 2009;19(2):370–379,
Cui Y, Zhang X. Apparent diffusion coefficient: potential imaging biomarker for prediction and early detection of response to chemotherapy in hepatic metastases. Radiology. 2008;248(3):894–900,
Fujimoto K, Kato M, Wada S. Non invasive evaluation of hepatic fibrosis in patients with chronic hepatitis C using elastography. Medix. 2007(suppl):24–28.
Gourtsoyianni S, Papanikolaou N, Yarmenitis S. Respiratory gated diffusion-weighted imaging of the liver:value of apparent diffusion coefficient measurements in the differentiation between most commonly encountered benign and malignant focal liver lesions. Eur Radiol. 2008;18(3):486–492.
Holzapfel K, Bruegel M, Eiber M, Rummeny E, Gaa J. Detection and characterization of focal liver lesions using respiratory – triggered diffusion – weighted MR imaging (DWI). MAGNETOM Flash. 2008;2:6–9.
Janica JR, Lebkowska U, Ustymowicz A. Contrast-enhanced ultrasonography in diagnosing liver metastases. Med Sci Monit. 2007;13(suppl 1):111–115.
Kandpal H, Sharma R, Madhusudhan KS, Kapoor K. Respiratory – triggered versus breath-hold diffusion- weighted MRI of liver lesions: comparison of image quality and apparent diffusion coefficient values. Am J Roentgenol. 2009;192(4):915–922,
Kendrick-Jones JC, Voss DM, De Zoysa JR. Nephrogenic systemic fibrosis in patients with end-stage kidney disease on dialysis, in the greater Auckland region, from 2000–2006. Nephrology. 2011;16(2):243–248,
Koh DM, Collins DJ. Diffusion-weighted MRI in the body: applications and challenges in oncology. Am J Roentgenol. 2007;188(6):1622–1635.
Koh DM, Brown G, Riddell AM, Scurr E, Collins DJ, Allen SD, et al. Detection of corolectal hepatic metastases using MnDPDP MR imaging and diffusion-weighted imaging (DWI) alone and in combination. Eur Radiol. 2008;18(5):903–910,
Koh DM, Thoeny HC, eds. Diffusion-Weighted MR Imaging, Applications in the Body. New York: Springer-Verlag; 2010.
Kwee T, Takahara T, Niwa T, Ivancevic MK, Herigault G, Van Cauteren M, et al. Influence of cardiac motion on diffusion- weighted magnetic resonance imaging of the liver. Magn Reson Mater Phys. 2009;22(5):319–325.
Lencioni R, ed. Enhancing the Role of Ultrasound with Contrast Agents. Italia: Springer-Verlag; 2006.
Malone D, Zech Ch. Magnetic resonance imaging of the liver: consensus statement. Eur Radiol. 2008;18(suppl 4):D1–D16.
Marugami N, Tanaka T, Kitano S. Early detection of therapeutic response to hepatic arterial infusion chemotherapy of liver metastases from colorectal cancer using Diffusion-Weighted MR Imaging. Cardiovasc Intervent Radiol. 2009;32(4):638–646,
Morton KA, Clark PB, Christensen CR, O'Malley JP, Blodgett TM, Waxman A, et al. Diagnostic Imaging –Nuclear Medicine. Pittsburg Amirsys. 2007;1:8–42.
Muhi A, Ichikawa T. High-b-value diffusion-weighted MR imaging of hepatocellular lesions: estimation of grade of malignancy of hepatocellular carcinoma. J Magn Reson Imaging. 2009;30(5):1005–1011,
Optimized workflow of liver MRI, Bayer Schering Pharma AG. 2009.
Padhani A, Liu G, Koh MD, Chenevert TL, Thoeny HC, Takahara T, et al. Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia. 2009;11(2):102–125.
Padhani A, Khan A. Diffusion-weighted (DW) and dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) for monitoring anticancer therapy. Targ Oncol. 2010;5(1):39–52,
Prokop M. Spiralna i wielorzędowa tomografia komputerowa człowieka [Spiral and Multislice Computed Tomography of the Body]. Warszawa: Medipage. 2007:403–470.
Raman S, Leary C, Bluemke D, Amendola M, Sahani D, McTavish JD, et al. Improved characterization of focal liver lesions with liver-specific gadoxetic acid disodium-enhanced magnetic resonance imaging; a multicentre phase 3 clinical trail. J Comput Assist Tomogr. 2010;34(2):163–172,
Rumuński J, Kalicka R, Bobek-Billewicz B. Obrazowanie parametryczne w badaniach mózgu metodami MRI/PET [Synthesis and integration of parametric images in dynamic brain studies using PET–MRI]. Gdańsk: Wydawnictwo Gdańskie. 2006:270–289.
Runge V. Rezonans magnetyczny w praktyce klinicznej. [MR in clinical practics]. Urban Partner. 2007:291–316.
Taouli B, Koh DM. Diffusion-weighted MR imaging of the liver. Radiology. 2010;254(1):47–66,
Taouli B, Koh DM. Extra-Cranial Application of Diffusion- Weighted MRI. New York: Cambridge University Press; 2011:18–31.
Van der Slius F, Bosch J, Terkivatan T, de Man RA, Ijzermans JN, Hunink MG. Hepatocellular adenoma: costeffectiveness of different treatment strategies. Radiology. 2009;252(3):737–746,
Yarmenitis SD, Karantanas A, Bakantaki Y. Detection od colorectal cancer hepatic metastases with kontrast- enhanced ultrasound: comparison with conventional B-Mode ultrasound. Dig Dis. 2007;25(1):86–93.
Journals System - logo
Scroll to top