REVIEW PAPER
The impact of selected vasoactive factors on vascular functions
 
More details
Hide details
1
Department of Local Physiological Regulation, Institute of Animal Reproduction and Food, Research of the Polish Academy of Sciences, Olsztyn, Poland
CORRESPONDING AUTHOR
Jolanta Muszak   

Department of Local Physiological Regulations, Bydgoska 7A, 10-243 Olsztyn, Poland. Tel.: +4889 539 31 25.
Submission date: 2013-02-26
Acceptance date: 2013-09-11
Online publication date: 2013-09-16
Publication date: 2020-04-08
 
Pol. Ann. Med. 2013;20(2):149–153
 
KEYWORDS
ABSTRACT
Introduction:
The regulation of blood circulation is crucial for maintaining vascular homeostasis under physiological conditions, i.e. for precisely controlling the balance between vasodilators and vasoconstrictor action. Numerous studies show that both arteries and veins actively participate in the control process.

Aim:
This paper discusses the regulation of the secretion of selected vasoactive factors in endothelial cells. The mechanisms of action of those factors, the effect of other regulators on the function of vascular smooth muscle cells and the impact of physiological and pathological factors on the vasoreactivity are also examined.

Discussion:
The synthesis and release of most vasodilators, including nitric oxide, carbon monoxide and prostacyclin, as well as vasoconstrictors – endothelin and thromboxane, takes place in endothelial cells. Prostaglandins F or E2 produced both in endothelial and other cells of bodily organs also influence blood vessel function. Steroid ovarian hormones, estradiol, progesterone and testosterone, affect vascular function indirectly by modulating endothelial secretory function.

Conclusions:
Blood vessel function largely depends on the activity of endothelial cells which release various vasoactive factors in response to stimulation. The resulting mutual interactions adjust vascular function to current needs. Endothelial dysfunction disrupts the activity of various organs, and it may contribute to cardiovascular diseases such as hypertension, atherogenesis or thrombotic lesions.

CONFLICT OF INTEREST
None declared.
 
REFERENCES (50)
1.
Albrecht ED, Babischkin JS, Lidor Y, Anderson LD, Udoff LC, Pepe GJ. Effect of estrogen on angiogenesis in co-cultures of human endometrial cells and microvascular endothelial cells. Hum Reprod. 2003;18(10):2039–2047.
 
2.
Arosh JA, Banu SK, Chapdelaine P, Madore E, Sirois J, Fortier MA. Prostaglandins biosynthesis, transport and signaling in corpus luteum: a basis for autoregulation of luteal function. Endocrinology. 2004;145(5):2551–2560.
 
3.
Bell LA, Gimenez T, Diehl JR, Chakraborty PK. Prostaglandin E 2 and progesterone during the estrous cycle of pig. Anim Reprod Sci. 1990;22(4):325–337.
 
4.
van Buren GA, Yang D-S, Clark KE. Estrogen-induced uterine vasodilatation is antagonized by L-nitroarginine methyl ester, an inhibitor of nitric oxide synthesis. Am J Obstet Gynecol. 1992;167(3):828–833.
 
5.
Cabral R, Gutierrez M, Fernandez AI, Cantabrana B, Hidalgo A. Progesterone and pregnenolone derivatives relaxing effect on smooth muscle. Gen Pharmacol. 1994;25(1):173–178.
 
6.
Chłopek J, Radomski M, Stefańczyk-Krzymowska S. Zwrotny i docelowy transfer macicznej PGE 2 w cyklu rujowym u świni. Medycyna Wet. 2008;64:588–590 [in Polish].
 
7.
Collins P, Rosano GM, Jiang C, Lindsay D, Sarrel PM, Poole-Wilson PA. Hypothesis: cardiovascular protection by oestrogen – a calcium antagonist effect? Lancet. 1993;341(8855):1264–1265.
 
8.
Ergul A. Endothelin-1 and endothelin receptor antagonists as potential cardiovascular therapeutic agents. Pharmacotherapy. 2002;22(1):54–65.
 
9.
Falkenstein E, Meyer C, Eisen C, Scriba PC, Wehling M. Full-length cDNA sequence of a progesterone membrane-binding protein from porcine vascular smooth muscle cells. Biochem Biophys Res Commun. 1996;229(1):86–89.
 
10.
Ford SP, Christenson K. Blood flow to uteri of sows during the estrous cycle and early pregnancy: local effect of the conceptus on the uterine blood supply. Biol Reprod. 1979;21(3):617–624.
 
11.
Ford SP, Reynolds LP, Magness RR. Blood flow to uterine and ovarian beds of gilts during the estrous cycle or early pregnancy. Biol Reprod. 1982;27(4):878–885.
 
12.
Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980;288:373–376, http://dx.doi.org/10.1038/2883....
 
13.
Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci USA. 1987;84(24):9265–9269.
 
14.
Johnson FK, Johnson RA. Carbon monoxide promotes endothelium-dependent constriction of isolated gracilis muscle arterioles. Am J Physiol Regul Integr Comp Physiol. 2003;285(3):R536–R541.
 
15.
Kaide JI, Zhang F, Wei Y, Jiang H, Yu C, Wang WH, et al. Carbon monoxide of vascular origin attenuates the sensitivity of renal arterial vessels to vasoconstrictors. J Clin Invest. 2001;107(9):1163–1171, http://dx.doi.org/10.1172/JCI1....
 
16.
Kossakowska-Krajewska A. Analiza wrodzonych wad rozwojowych serca i układu naczyniowego oraz układu nerwowego u dzieci urodzonych w województwie olsztyńskim w 1998 r. oraz warmińsko-mazurskim w latach 1999–2000. Rocznik Medyczny. 2007;14(1):35–42 [in Polish].
 
17.
Koziorowski M, Stefańczyk-Krzymowska S, Tabęcka-Łonczyńska A, Gilun P, Kamiński M. Gaseous messenger carbon monoxide is released from the eye into the ophthalmic venous blood depending on the intensity of sunlight. J Biol Reg Homeostat Agents. 2012;26(1):111–118.
 
18.
Kun T, Dąbrowski R. Endoteliny w regulacji funkcji układu krążenia. Pol Przegl Kardiol. 2002;4(2):149–155 [in Polish].
 
19.
Leffler CW, Nasjletti A, Yu C, Johnson RA, Fedinec AL, Walker N. Carbon monoxide and cerebral microvascular tone in newborn pigs. Am J Physiol. 1999;276:H1641–H1646.
 
20.
Losordo DW, Kearney M, Kim EA. Variable expression of the estrogen receptor in normal and atherosclerotic coronary arteries of postmenopausal women. Circulation. 1994;89:1501–1510, http://dx.doi.org/10.1161/01.C....
 
21.
Maines MD. The heme oxygenase system and its function in the brain. Cell Mol Biol. 2000;46(3):573–585.
 
22.
Masuda H, Azuma H. Biological and pathophysiological roles of endogenous methylarginines as inhibitors of nitric oxide synthase. Nippon Yakurigaku Zasshi. 2002;119(1):29–35.
 
23.
Mehta JL, Lawson D, Mehta P, Saldeen T. Increased prostacyclin and thromboxane A 2 biosynthesis in atherosclerosis. Proc Natl Acad Sci USA. 1988;85(12):4511–4515.
 
24.
Moncada S, Palmer RMJ, Higgs EA. Nitric oxide: Physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991;43(2):109–142.
 
25.
Morawietz H, Talanow R, Szibor M, Rueckschloss U, Schubert A, Bartling B, et al. Regulation of the endothelin system by shear stress in human endothelial cells. J Physiol. 2000;525(3):761–770, http://dx.doi.org/10.1111/j.14....
 
26.
Morita T, Perrella MA, Lee ME, Kourembanas S. Smooth muscle cell-derived carbon monoxide is a regulator of vascular cGMP. Proc Natl Acad Sci USA. 1995;92(5):1475–1479.
 
27.
Muller-Delp JM, Lubahn DB, Nichol KE, Philips BJ, Price EM, Curran EM, et al. Regulation of nitric oxide-dependent vasodilation in coronary arteries of estrogen receptor-alfa- deficient mice. Am J Physiol Heart Circ Physiol. 2003;285:2150–2157.
 
28.
Naik JS, Walker BR. Homogenous segmental profile of carbon monoxide-mediated pulmonary vasodilation in rats. Am J Physiol Lung Cell. Mol Physiol. 2001;281(625–623):L1436–L1443.
 
29.
Nowak D, Kozłowska H, Żurada A, Gielecki J. The development of the aorta in prenatal human life. Pol Ann Med. 2011;18(1):20–30.
 
30.
Nowak D, Kozłowska H, Żurada A, Gielecki J. The development of the pulmonary trunk and the pulmonary arteries in the human fetus. Pol Ann Med. 2011;18(1):31–41.
 
31.
Reinhart WH. Shear-dependence of endothelial functions. Experientia. 1994;50(2):87–93.
 
32.
Rossouw JE. Hormones, genetic factors, and gender differences in cardiovascular disease. Cardiovasc Res. 2002;53(3):550–557.
 
33.
Rubanyi GM, Johns A, Kauser K. Effect of estrogen on endothelial function and angiogenesis. Vasc Pharmacol. 2002;38(2):89–98.
 
34.
Rupnow H, Phernetton TM, Modrick ML, Wiltbank MC, Bird IM, Magness RR. Endothelial vasodilator production by uterine and systemic arteries. VIII. Estrogen and progesterone effects on cPLA 2 , COX-1, and PGIS protein expression. Biol Reprod. 2002;66(2):468–474, http://dx.doi.org/10.1095/biol....
 
35.
Sammut IA, Foresti R, Clark JF, Exon DJ, Vesely MJ, Sarathchandra P, et al. Carbon monoxide is a major contributor of the regulation of vascular tone in aortas expressing high levels of heme oxygenase-1. Br J Pharmacol. 1998;125:1437–1444, http://dx.doi.org/10.1038/sj.b....
 
36.
Sarrel PM. The differential effects of oestrogens and progesterone on vascular tone. Hum Reprod Update. 1999;5(3):205–209, http://dx.doi.org/10.1093/humu....
 
37.
Singel DJ. Chemical physiology of blood flow regulation by red blood cells: role of nitric oxide and S-nitrosohemoglobin. Annu Rev Physiol. 2005;67:99–145.
 
38.
Skafar DF, Xu R, Morales J, Ram J, Sowers JR. Female sex hormones and cardiovascular disease in women. J Clin Endocrinol Metab. 1997;82:3913–3918.
 
39.
Skipor J, Pikulińska M, Stefańczyk-Krzymowska S. Contractile effect of PGF2α and PGE2 on isolated branches of uterine and ovarian artery in different days of estrous cycle and early pregnancy in pigs. Pol J Vet Sci. 2010;13(4):597–603.
 
40.
Stefańczyk-Krzymowska S, Krzymowski T. Lokalnie docelowy i zwrotny transfer macicznych prostaglandyn F2α i E2 oraz ich rola w regulacji cyklu rujowego. Med Wet. 2008;64(4B):511–514.
 
41.
Świtalska M, Strządała L. Niegenomowe działanie estrogenów [Non-genomic action of estrogens]. Postępy HigMed Dośw. 2007;61:541–547 [in Polish].
 
42.
Tanaka Y, Yamaki F, Koike K, Toro L. New insights into the intracellular mechanisms by which PGI 2 analogues elicit vascular relaxation: cyclic AMP-independent, Gs-protein mediated-activation of MaxiK channel. Curr Med Chem Cardiovasc Hematol Agents. 2004;2(3):257–265, http://dx.doi.org/10.2174/1568....
 
43.
Uematsu M, Ohara Y, Navas JP, Nishida K, Murphy TJ, Alexander RW, et al. Regulation of endothelial cell nitric oxide synthase mRNA expression by shear stress. Am J Physiol. 1995;269(6):C1371–C1378.
 
44.
Wang R, Wu L, Wang Z. The direct effect of carbon monoxide on KCa channels in vascular smooth muscle cells. Pflugers Arch. 1997;434:285–291.
 
45.
Watanabe K. Prostaglandin F synthase. Prostaglandins Other Lipid Mediat. 2002;68-69:401–407.
 
46.
Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y, et al. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature. 1988;332:411–415, http://dx.doi.org/10.1038/3324....
 
47.
Zakhary R, Gaine SP, Dinerman JL, Ruat M, Flavahan NA, Snyder SH. Heme oxygenase-2: endothelial and neuronal localization and role in endothelium-dependent relaxation. Proc Natl Acad Sci USA. 1996;93(2):795–798.
 
48.
Zezula-Szpyra A, Andronowska A, Gawrońska B, Doboszyńska T. The influence of estradiol on activity of NADPH-diaphorase in the endothelium of the blood vessels in the broad ligament of the uterus of ovariectomized pigs. Folia Histochem Cytobiol. 1996;34(suppl 1):57–58.
 
49.
Zezula-Szpyra A. Morfologiczne przystosowania naczyń krwionośnych i limfatycznych więzadła szerokiego macicy owcy do lokalnych regulacji czynności narządu rozrodczego. Acta Acad Agric Tech Olstenensis Vet. 1998;25(suppl A):1–105 [in Polish].
 
50.
Zhang F, Kaide J, Wei Y, Jiang H, Yu C, Balazy M, et al. Carbon monoxide produced by isolated arterioles attenuates pressure-induced vasoconstriction. Am J Physiol Heart Circ Physiol. 2001;281(1):H350–H358.