RESEARCH PAPER
Is serum vitamin D level involved in left ventricular remodeling among individuals with impaired renal function? A systematic review with pairwise and dose-response meta-analysis
More details
Hide details
1
Postgraduate Program of Public Health, Universitas Muhammadiyah Aceh, Banda Aceh, Indonesia
2
Faculty of Medicine, Universitas Sam Ratulangi, Manado, Indonesia
3
Faculty of Medicine, Universitas YARSI, Jakarta, Indonesia
4
Medical Research Unit, Universitas Syiah Kuala, Banda Aceh, Indonesia
5
Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
These authors had equal contribution to this work
Submission date: 2024-12-14
Final revision date: 2025-02-06
Acceptance date: 2025-02-06
Online publication date: 2025-11-14
KEYWORDS
TOPICS
ABSTRACT
Introduction:
Left ventricular remodeling in individuals with impaired renal function is associated with adverse cardiovascular outcomes. Vitamin D deficiency (VDD) may contribute to remodeling, yet the interaction remains underexplored.
Aim:
The aim of this review was to evaluate the relationship between serum vitamin D levels and left ventricular remodeling.
Material and methods:
Relevant records indexed in Scopus, PubMed, Web of Science, Europe PMC, and Scilit were identified using predetermined terms. Observational studies reporting the relationship between circulating vitamin D levels and left ventricular remodeling in renal-impaired individuals were considered eligible for the review. Out of 4503 records, 6 studies (n = 3235 participants) met the inclusion criteria. Pairwise, single-arm, and dose-response meta-analyses were performed under a random-effects model.
Results and discussion:
The pooled analysis revealed that individuals with VDD had significantly higher left ventricular mass index (LVMI) (SMD = 0.69; 95%CI: 0.21–1.16; P = 0.005). A pooled correlation analysis demonstrated an inverse association between serum vitamin D and LVMI (r = –0.414; 95% CI: –0.48 to –0.34; P < 0.001). Significant heterogeneity was observed in the association analysis (I² = 89%; P < 0.001), but not in the correlation analysis (I² = 6%; P = 0.30). The correlation between serum vitamin D levels and LVMI exhibited a significant J-shaped pattern, with the optimal maintenance level identified as above 46.26 ng/mL.
Conclusions:
Serum vitamin D levels are inversely associated with LVMI in renal-impaired individuals, suggesting that VDD contributes to adverse cardiac remodeling.
ACKNOWLEDGEMENTS
Authors appreciate the collaboration among Universitas Muhammadiyah Aceh, Universitas Sam Ratulangi, Universitas YARSI, Universitas Syiah Kuala, and Universitas Indonesia.
FUNDING
CONFLICT OF INTEREST
REFERENCES (52)
1.
Böckmann I, Lischka J, Richter B, et al. FGF23-mediated activation of local RAAS promotes cardiac hypertrophy and fibrosis. Int J Mol Sci. 2019;20(18):4634.
https://doi.org/10.3390/ijms20....
2.
Hassan MO, Duarte R, Dix-Peek T, et al. Correlation between volume overload, chronic inflammation, and left ventricular dysfunction in chronic kidney disease patients. Clin Nephrol. 2016;86(13):131.
https://doi.org/10.5414/CNP86S....
4.
Naveh-Many T, Volovelsky O. Parathyroid cell proliferation in secondary hyperparathyroidism of chronic kidney disease. Int J Mol Sci. 2020;21(120):4332.
https://doi.org/10.3390/ijms21....
5.
Chou P-C, Chen Y-H, Chung T-K, et al. Supplemental 25-hydroxycholecalciferol Alleviates Inflammation and Cardiac Fibrosis in Hens. Int J Mol Sci. 2020;21(21):8379.
https://doi.org/10.3390/ijms21....
6.
Hu MC, Scanni R, Ye J, et al. Dietary vitamin D interacts with high phosphate-induced cardiac remodeling in rats with normal renal function. Nephrol Dial Transplant. 2020;35(3):411–421.
https://doi.org/10.1093/ndt/gf....
7.
Han L, Xu X-J, Zhang J-S, Liu H-M. Association between vitamin D deficiency and levels of renin and angiotensin in essential hypertension. Int J Clin Pract. 2022;2022:8975396.
https://doi.org/10.1155/2022/8....
8.
Wang D, He R, Song Q, et al. Calcitriol inhibits NaAsO2 triggered hepatic stellate cells activation and extracellular matrix oversecretion by activating Nrf2 signaling pathway through vitamin D receptor. Biol Trace Elem Res. 2024;202(8):3601–3613.
https://doi.org/10.1007/s12011....
9.
Bucharles S, Barberato SH, Stinghen AE, et al. Hypovitaminosis D is associated with systemic inflammation and concentric myocardial geometric pattern in hemodialysis patients with low iPTH levels. Nephron Clin Pract. 2011;118(4):c384-c391.
https://doi.org/10.1159/000323....
10.
Bover J, Gunnarsson J, Csomor P, et al. Impact of nutritional vitamin D supplementation on parathyroid hormone and 25-hydroxyvitamin D levels in non-dialysis chronic kidney disease: a meta-analysis. Clin Kidney J. 2021;14(10):2177–2186.
https://doi.org/10.1093/ckj/sf....
11.
Christodoulou M, Aspray TJ, Schoenmakers I. Vitamin D supplementation for patients with chronic kidney disease: a systematic review and meta-analyses of trials investigating the response to supplementation and an overview of guidelines. Calcif Tissue Int. 2021;109(2):157–178.
https://doi.org/10.1007/s00223....
12.
Yu F, Liu C, Sharmin S. Performance, usability, and user experience of rayyan for systematic reviews. Proc Assoc Inf Sci Technol. 2022;59:843–844.
https://doi.org/10.1002/pra2.7....
13.
Bociek A, Bociek M, Bielejewska A, Dereziński T, Jaroszyński A. Comparison of commonly used creatinine-based GFR estimating formulas in elderly female non-diabetic patients with chronic kidney disease. Pol Ann Med. 2021;28(1):6–10.
https://doi.org/10.29089/2020.....
14.
Iqhrammullah M, Gusti N, Andika FF, Abdullah A. Association of serum vitamin D and the risk of cardiovascular diseases among diabetic patients: A systematic review and meta-analysis. Clin Nutr ESPEN. 2024;62:66–75.
https://doi.org/10.1016/j.clne....
15.
Alfieri C, Vettoretti S, Ruzhytska O, et al. Vitamin D and subclinical cardiac damage in a cohort of kidney transplanted patients: a retrospective observational study. Sci Rep. 2020;10:19160.
https://doi.org/10.1038/s41598....
16.
Schneider MP, Scheppach JB, Raff U, et al. Left ventricular structure in patients with mild-to-moderate CKD – a magnetic resonance imaging study. Kidney Int Rep. 2019;4(2):267–274.
https://doi.org/10.1016/j.ekir....
17.
Canziani M, Tomiyama C, Higa A, Draibe S, Carvalho A. Fibroblast growth factor 23 in chronic kidney disease: bridging the gap between bone mineral metabolism and left ventricular hypertrophy. Blood Purif. 2011;31(1–3):26–32.
https://doi.org/10.1159/000321....
18.
Esen B, Sahin I, Atay AE, et al. Decreased Serum 25-hydroxyvitamin D Level Causes Interventricular Septal Hypertrophy in Patients on Peritoneal Dialysis: Cardiovascular Aspects of Endogenous Vitamin D Deficiency. Int J Nephrol. 2016;2016:2464953.
https://doi.org/10.1155/2016/2....
19.
Liu B, Yang Q, Zhao L, Shui H, Si X. Vitamin D receptor gene polymorphism predicts left ventricular hypertrophy in maintenance hemodialysis. BMC Nephrol. 2022;23(1):32.
https://doi.org/10.1186/s12882....
20.
Lai S, Coppola B, Dimko M, et al. Vitamin D deficiency, insulin resistance, and ventricular hypertrophy in the early stages of chronic kidney disease. Ren Fail. 2014;36(1):58–64.
https://doi.org/10.3109/088602....
21.
Patange AR, Valentini RP, Gothe MP, Du W, Pettersen MD. Vitamin D deficiency is associated with increased left ventricular mass and diastolic dysfunction in children with chronic kidney disease. Pediatr Cardiol. 2013;34(3):536–542.
https://doi.org/10.1007/s00246....
22.
Chang J, Ye X-G, Hou Y-P, Wu J-L, Li S-L, Sun Q-M. Vitamin D level is associated with increased left ventricular mass and arterial stiffness in older patients with impaired renal function. Med Sci Monit. 2015;21:3993.
https://doi.org/10.12659/msm.8....
23.
Santoro D, Gagliostro G, Alibrandi A, et al. Vitamin D receptor gene polymorphism and left ventricular hypertrophy in chronic kidney disease. Nutrients. 2014;6(3):1029–1037.
https://doi.org/10.3390/nu6031....
24.
Testa A, Mallamaci F, Benedetto FA, et al. Vitamin D receptor (VDR) gene polymorphism is associated with left ventricular (LV) mass and predicts left ventricular hypertrophy (LVH) progression in end-stage renal disease (ESRD) patients. J Bone Min Res. 2010;25(2):313–319.
https://doi.org/10.1359/jbmr.0....
25.
Matias PJ, Ferreira C, Jorge C, et al. 25-Hydroxyvitamin D3, arterial calcifications and cardiovascular risk markers in haemodialysis patients. Nephrol Dial Transplant. 2009;24(2):611–618.
https://doi.org/10.1093/ndt/gf....
26.
Sonkar SK, Bhutani M, Sonkar GK, et al. Vitamin D levels and other biochemical parameters of mineral bone disorders and their association with diastolic dysfunction and left ventricular mass in young nondiabetic adult patients with chronic kidney disease. Saudi J Kidney Dis Transpl. 2017;28(4):758–763.
https://doi.org/10.4103/sjkdt.....
27.
García-Cantón C, Bosch E, Auyanet I, et al. 25 hydroxyvitamin D levels and cardiovascular risk in a cohort of patients with chronic kidney disease. Nefrologia. 2010;30(4):435–442.
https://doi.org/10.3265/Nefrol....
28.
Van Ballegooijen A, Snijder M, Visser M, et al. Vitamin D in relation to myocardial structure and function after eight years of follow-up: the Hoorn study. Ann Nutr Metab. 2012;60(1):69–77.
https://doi.org/10.1159/000336....
29.
Hsu S, Zelnick LR, Bansal N, et al. Vitamin D metabolites and risk of cardiovascular disease in chronic kidney disease: the CRIC study. J Am Heart Assoc. 2023;12(14):e028561.
https://doi.org/10.1161/JAHA.1....
30.
Hyeon J, Kim S, Ye BM, et al. Association of 1, 25 dihydroxyvitamin D with left ventricular hypertrophy and left ventricular diastolic dysfunction in patients with chronic kidney disease. PLoS One. 2024;19(5):e0302849.
https://doi.org/10.1371/journa....
31.
Ky B, Shults J, Keane MG, et al. FGF23 modifies the relationship between vitamin D and cardiac remodeling. Circ Heart Fail. 2013;6(4):817–824.
https://doi.org/10.1161/CIRCHE....
32.
Ramadan SM, Hadeel AM, Al Azizizi MN, Heba AM. Left ventricular mass and functions in Egyptian children with chronic kidney disease in comparison to normal subjects. Saudi J Kidney Dis Transpl. 2022;33(2):296–306.
https://doi.org/10.4103/1319-2....
33.
Căpuşă C, Stefan G, Stancu S, et al. Subclinical cardiovascular disease markers and vitamin D deficiency in non-dialysis chronic kidney disease patients. Arch Med Sci. 2016;12:1015–1022.
34.
Refin RY, Andika FF, Abudurrahman MF, et al. Can smartphone-based diabetes control apps improve cardiovascular risk among patients with diabetes? A systematic review and meta-analysis. Narra X. 2024;2(1):e123.
http://doi.org/10.52225/narrax....
35.
Duta TF, Zulfa PO, Alina M, et al. Efficacy of acetazolamide and loop diuretics combinatorial therapy in congestive heart failure: A meta-analysis. Narra X. 2024;2(1):e124.
https://doi.org/10.52225/narra....
36.
Zhao J-D, Jia J-J, Dong P-S, et al. Effect of vitamin D on ventricular remodelling in heart failure: a meta-analysis of randomised controlled trials. BMJ Open. 2018;8(8):e020545.
http://doi.org/10.1136/bmjopen....
37.
Niccoli G, Del Buono MG. Vitamin D and left ventricular adverse remodeling: does association imply causation? Int J Cardiol. 2019;277:200–201.
https://doi.org/10.1016/j.ijca....
38.
Mahjoob MP, Piranfar MA, Maghami E, et al. Diagnostic value of speckle tracking echocardiography (STE) in the determination of myocardial ischemia: a pilot study. Pol Ann Med. 2019;26(2):126–129.
https://doi.org/10.29089/2019.....
39.
Kramann R, Erpenbeck J, Schneider RK, et al. Speckle tracking echocardiography detects uremic cardiomyopathy early and predicts cardiovascular mortality in ESRD. J Am Soc Nephrol. 2014;25(10):2351–2365.
https://doi.org/10.1681/ASN.20....
40.
Freundlich M, Gamba G, Rodriguez-Iturbe B. Fibroblast growth factor 23—Klotho and hypertension: Experimental and clinical mechanisms. Pediatric Nephrology. 2021;36:3007–3022.
41.
Ivey-Miranda JB, Stewart B, Cox ZL, et al. FGF-23 (fibroblast growth factor-23) and cardiorenal interactions. Circ Heart Fail. 2021;14(11):e008385.
http://doi.org/10.1161/CIRCHEA....
42.
Gupta J, Dominic EA, Fink JC, et al. Association between inflammation and cardiac geometry in chronic kidney disease: findings from the CRIC study. PLoS One. 2015;10(4):e0124772.
http://doi.org/10.1371/journal....
43.
Shi M, McMillan KL, Wu J, et al. Cisplatin nephrotoxicity as a model of chronic kidney disease. Lab Investig. 2018;98(8):1105–1121.
https://doi.org/10.1038/s41374....
45.
Sun M, Wu X, Yu Y, et al. Disorders of calcium and phosphorus metabolism and the proteomics/metabolomics-based research. Front Cell Dev Biol. 2020;8:576110.
http://doi.org/10.3389/fcell.2....
49.
Jensen NS, Wehland M, Wise PM, Grimm D. Latest knowledge on the role of vitamin D in hypertension. Int J Mol Sci. 2023;24(5):4679.
http://doi.org/10.3390/ijms240....
50.
Mehdipoor M, Damirchi A, Razavi Tousi SMT, Babaei P. Concurrent vitamin D supplementation and exercise training improve cardiac fibrosis via TGF-β/Smad signaling in myocardial infarction model of rats. J Physiol Biochem. 2021;77(1):75–84.
http://doi.org/10.1007/s13105-....
51.
Zupcic A, Latic N, Oubounyt M, et al. Ablation of Vitamin D Signaling in Cardiomyocytes Leads to Functional Impairment and Stimulation of Pro-Inflammatory and Pro-Fibrotic Gene Regulatory Networks in a Left Ventricular Hypertrophy Model in Mice. Int J Mol Sci. 2024;25(11):5929.
http://doi.org/10.3390/ijms251....
52.
Zittermann A, Trummer C, Theiler-Schwetz V, et al. Vitamin D and cardiovascular disease: an updated narrative review. Int J Mol Sci. 2021;22(6):2896.
http://doi.org/10.3390/ijms220....